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SUMMARY

A fast-response, total-pressure probe was used with a periodically
sampling and averaging data acquisition system to study the unsteady
total-pressure field in an axial-flow turbomachine. Periodically un-
steady total-pressure data were used to demonstrate some of the ways in
which turbomachine blade wake transport and interaction influences the
energy transfer involved. Observed trends of periodic variations in
local total pressures could be explained in terms of the details of
energy transfer associated with the different kinds of fluid particles
(freestream, wake segment, blade surface boundary layer, mixed) moving
through a blade row.

Some frequency response requirements of measurement systems used

for turbomachine unsteady total-pressure research are proposed. Examples

of how the system and its components (probes, filters and amplifiers)
respond to idealized wakes illustrate the necessity of a system that
will faithfully respond to anticipated wake forms. The importance of

the harmonic content of the unsteady data being measured is demonstrated.
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SYMBOLS AND NOTATION

Harmonic amplitude (Figure 3.3)

Width of the wake (Figure 3.3)

Blade chord length (Figure 2.3), m
Undamped natural frequency

Local acceleration of gravity, m/s2
Gravitational constant, 1.0 (kg'm)/(N-sz)

Time-average total head with respect to barometric pressure (Eq.
3.2), N'm/kg

Periodic-average total head with respect to barometric pressure
(Eq. 3.2), N'm/kg

Periodic-average total head with respect to barometric pressure,

Nem/kg

Static head with respect to barometric pressure, N°m/kg; velocity
difference between wake and freestream to freestream velocity
ratio (Figure 3.3)

Dynamic head with respect to barometric pressure, N+'m/kg
Barometric pressure (Eq. 3.3), m of Hg

Blade spacing to wake width ratio

Number of arithmetically averaged samples involved

Total pressure with respect to barometric pressure (Figure 3.2),
in. of HZO

Barometric pressure, N/m2

Percent passage height from hub

Gas constant (Eq. 3.4), N-m/kg K

Circumferential space between blades, blade pitch, m or deg
Blade spacing (Figure 3.3)

o
Temperature, K

aaiiaorm




xviii

€ ax Maximum blade thickness (Figure 2.3), m

v Voltage (Figure 3.2), volts; absolute velocity, m/s
W Relative velocity (Figure 4.2), m/s

Y Circumferential traversing position, deg

YO Circumferential blade-row setting position when Y is equal to
zero, circumferential distance from probe-traversing measurement
stations to blade stacking axis, positive in direction of rotor
rotation, deg

] Absolute fiow angle (Figure 4.2), deg

B Relative flow angle (Figure 4,2), deg

Y Stagger angle (Figure 2.3), deg

YH20 Specific weight of water manometer fluid, N/m3

th Specific weight of mercury (Eq. 3.3), N/m3

Ky Inlet blade angle (Figure 2.3), deg

Ky Outlet blade angle (Figure 2.3), deg

g Damping ratio

o} Density of air, k.g/m3

) Standard deviation of the periodic sample average, N+.m/kg

o Standard deviation of the random fluctuations, N-m/kg
Wy Blade passing frequency, rad/s
w_ . Cut-off frequency, rad/s

w Undamped natural frequency, rad/s

Subscripts
F Freestream (Figure 4.2)

k Harmonic components (Figure 3.3)

W Wake (Figure 4.2)
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1. INTRODUCTION

Further generalization of turbomachine design procedures to the
extent that they more correctly reflect the inherent periodically un-
steady flows involved is desirable. This kind of progress is dependent
on more of the phenomenological aspects of the unsteadiness of the flow
being revealed through experiment and organized by analysis. Research
in this direction is important because of the improvements still to be
realized in designing turbomachines that are energy efficient, quiet and
able to survive the variety of aerodynamic sources of blade vibration
present when the machine is in operation.

The unsteady flow of interest to the research project described in
this report is the periodically unsteady flow due to rotor/stator wake
production, transport and interaction in an axial-flow turbomachine,
Total-head values are indicative of fluid particle energy additionm,
through work,and energy loss, through friction. Thus, the periodic un-
steadiness of turbomachine energy transfer can be studied by observing
the periodic unsteadiness of the total-head field. Advancements in
measurement systems and techniques have made periodically unsteady total-
head data acquisition possible, The objectives of this project were to
develop further a periodically unsteady total-pressure measurement sys-
tem designed earlier by Alarcon, Okiishi and Junkhan (1977) and to use
this system to acquire unsteady total-pressure data in the first stage
of an axial-flow turbomachine. Previously obtained velocity vector data
(Schmidt et al. (1978)) and total-pressure data (Alarcon, Okiishi and

Junkhan (1977)) for the same axial~flow turbomachine now used indicate




that a considerable amount of periodic unsteadiness exists downstream of
embedded rotor and stator blace rows. Further, it has been concluded
that this unsteadiness is largely caused by variations with rotor sam-

pling position of the spatial distribution and proportions of differemnt

y kinds of fluid particles in the measurement "window.”
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2. RESEARCH COMPRESSOR FACILITY

The research compressor facility of the Iowa State University
Engineering Research Institute/Mechanical Engineer ing Department Turbo-
machinery Components Research Laboratory was used in this research
project, This facility will be described briefly in this section. A
more complete description was given previously by Schmidt and Okiishi

(1976) .

' 2.1, Axial-Flow Research Compressor

An overall schematic .f the low-speed, three-stage, axial-flow
research compressor apparatus is shown in Figure 2.1. The compressor
was driven by an 11 kw (15 hp) variable speed DC motor. The motor
speed was measured with a frequency counter/magnetic pickup/60-toothed
gear arrangement and could be adjusted electronically and maintained
to within + 1 rpm with a feedback control circuit. From the compressor,
air proceeded through a downstream duct consisting of a flow straighten-
ing section, a venturi flow rate meter, and a diffuser section and then
past an adjustable throttle plate.

Details of the compressor section are illustrated in Figure 2.2.

A smooth, gradually contracting inlet to the compressor guided the flow
entering both the inlet guide vanes and the three repeating sets of
rotor/stator stages. These blades were located within a constant cross-

sectional area annulus with a 0.284 m (11.2 in.) hub diameter and a

0.406 m (16.0 in.) tip diameter. The blades were composed of British

C4 sections reflecting a free vortex design and were constructed of a
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PROBE o
MEASUREMENT é
STATIONS

Figure 2.2. Research compressor with probe measurement stations,
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Monsanto ABS plastic. General blade characteristics are summarized

below:
Number of blade rows inlet guide vane (IGV) and stator rows - 57
rotor rows - 38
Blade span (constant) 6.10 cm (2.4 in.)

Blade chord (constant) 3.05 em (1.2 in.)

Blade section maximum 10%
thickness/chord ratio

Blade section geometry details are listed in Table 2.1 with the
nomenclature defined in Figure 2.3. The rotor blade rows were aligned
so that corresponding blade stacking axes for each rotor row were in
line when viewed along the compressor axis. The stationary blade rows,

which could be moved individually or simultaneously by a motor-driven

circumferential-motion carriage, were positioned to yield minimum noise.
The minimum noise circumferential settings of the stationary blade rows
were determined from sound-pressure level measurements by Schmidt and
Okiishi (1976).

Probe measurement stations were located axially approximately mid-
way between the blade rows as shown in Figure 2.4. For the first stage

only, Figure 2.5 shows the circumferential extent of the measurement

stations. Some important measurement position nomenclature is also
explained in Figure 2.5. Circumferential traversing of the flow was

accomplished by moving all blades (including sampled reference rotor

blades) together past a stationary probe. Sampling was performed with
the help of a photoelectric pickup, triggered by a disk with cne slot

per revolution. Unsteady flow data were obtained for circumferential !




Table 2.1.

Figure 2.3.

Blade nomenclature.

Blade geometry tables for IGV, rotors, and stators at several

radial locatiomns

Blade Angles

Percent Inlet Qutlet Camber

Blade P;::s:ugt- solidity Stagger (l /2 P
Row PHH c/S 1 2
degrees degrees degrees degrees
0 1.263 20.35 0.00 42.10 -42.10
10 1.211 20.05 0.00 40.77 -40.77
20 1.164 19.69 0.00 39.47 -39.47
30 1.121 19.25 0.00 38.23 -38.23
> 20 1.080 18.65 0.00 37.08 -37.08
2 50 1.041 18.15 0.00 36.05 -36.05
60 1.004 17.63 0.00 35.02 -35.02
70 0.971 17.05 0.00 33.93 -33.93
80 0.940 16.45 0.00 32.92 -32,92
90 0.913 15.65 0.00 32.10 -32.10
100 0.887 14.15 0.00 3l.40 -31,40
0 1.299 -20,54 -42.40 3.90 -46.30
10 1.250 -24.39 <4k, 76 - 2.84 -41.92
20 1.205 -28.11 -46.85 - 9.51 -37.36
30 1.164 -31.70 -48.53 -15.96 -32.57
5 40 1.123 -35.15 -49.82 -21.88 -27.94
3 50 1.078 -38.47 -50.81 -27.06 -23.75
a 60 1.035 -41.66 -51.77 -31.64 -20.13
70 0.999 -44. 71 -52.90 -35.78 -17.12
80 0.968 -47.63 -53.98 -39.26 -14.72
90 0.939 -50.41 -54.82 -41.91 -12.91
100 0.909 -53.07 -55.50 -44.10 -11.40
0 1.263 40.24 54.80 26.70 28.10
10 1.211 39.32 53.48 25.67 27.81
20 1.164 38.39 52.36 24.68 27.68
30 1.121 37.46 51.43 23.74 27.69
M 40 1.080 36.54 50.25 22.77 27.48
M 50 1.041 35.61 48.56 21.72 27.84
b 60 1.004 34.68 47.13 20.76 26.37
70 0.971 33.75 46 .65 20.01 26,64
80 0.940 32.83 46,36 19.34 27.02
30 0.913 31.90 45.59 18.62 26.97
100 0.887 30.97 44.50 17.85 26.65
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position values of Y/Ss from 0.0 to 1.0 for different values of YOR/SR’

the circumferential sampling position of a reference rotor blade.

2.2, Stationary Blade Row and Probe Actuators

A circumferential-motion carriage was used to move the stationary
blades and the periodically sampled rotor blades past the stationary
probe in twenty-one steps over the circumferential distance between two
adjacent stator blades. A calibrated potentiometer was used to monitor
the circumferential position.

A probe actuator (L. C. Smith Company model '6180) and related con-
trol indicator (L. C. Smith Company model DI-3R) and switch box (L. C.
Smith Company model DI-4R-SB) were used to position the measuring probes
to the radial position and yaw angle desired in the compressor. The
radial position, specified in terms of percent of annulus passage height
from the tmb (PHH), could be measured to within 0.15 mm, The yaw angle
could be measured to within 0,05 degrees. Calibrated potentiometers
indicating immersion and yaw angle were used to set probe radial posi-

tion and yaw angle.

2.3. Pressure and Temperature Measurement Instrumentation

Unsteady total-pressure measurements were obtained with a fast-
response prcobe similar to the one designed by Alarcon, Okiishi, and
Junkhan (1977). The probe, shown in Figure 2.6, was equipped with a

KULITE model XCS-062-5 pressure transducer., The transducer consisted

of a miniature silicon diaphragm on which a fully active four-arm
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Wheatstone bridge had been atomically bonded using solid state dif-
fusion. A 15-volt power supply was used to provide an excitation voltage
to the bridge. A metél screen, designed by Boeing Company engineers for
protecting a transducer diaphragm without seriously decreasing frequency
response, ;as installed in front of the diaphragm. Basically, the metal
screen consisted of one hole in the center surrounded by seven smaller
holes. - The volume between the screen and the transducer diaphragm was
filled with a silicon seal material. To keep the probe's frequency re-
sponse high, the volume between the transducer and the probe hole open-
ing was minimized. Some connecting volume was necessary to include an
internal chamber intended to extend the flow direction range over which
the probe is insensitive. A temperature compensation device was added
to the original transducer electrical circuit. The probe was designed
so that the pressure reference tube of the transducer was exposed to
atmospheric pressure. The transducer specifications are stmmarized in
Table 2.2,

Time-average total-pressure measurements were made earlier by
Schmidt and Okiishi (1976) with a slow-response cobra probe (United
Sensor type CA)/water-in-glass manometer system.

Barometric pressure was measured using a mercury-in-glass barometer
(Princo Instruments, Inc. model B=222).

Copper-constantan thermocouples and a precision millivolt potentio-
meter (Leeds and Northrup Company model 8686) were used to measure work-

ing fluid temperatures. Several mercury-in-glass thermometers were

employed for room air temperature measurements.
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Table 2.,2. Transducer specifications

Rated pressure 5 psig

Maximum pressure 25 psig

Maximum reference pressure 25 psig
Sensitivity 16.754 mV/psig
Maximum excitation 20 VDC

Thermal effect on zero < 3.00% PS/100°F
Thermal effect on sensitivity - < 3,00% FS/100°F
Output impedance 1110 ohms

Input impedance 2390 ohms
Natural frequency (approx) 125 kHz

2.4, Fast-Response Measurement System

A schematic setup diagram of the fast-response measurement system
used to make unsteady total-pressure measurements is shown in Figure
2.7. The measurement system was composed of the following components:

(1) Fast-response total-pressure probe. |

(2) 15-volt probe power supply (Burr-Brown model 558).

(3) 1000~gain differential voltage amplifier.

(4) Amplifier power supply (Burr-Brown model 503).

(5) Band-pass filter (General Radio Co. model 1952 universal

filter).

(6) Capacitor (0.01 + 10% pf).

(7) Periodic sample-and-hold circuit.
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(8) Photoelectric triggering circuit.
(9) Signal averaging circuit.

(10) Digital scanning voltmeter (Hewlett-Packard model 3480D).

(11) Desk-top calculator (Hewlett-Packard model 98214).

(12) oOscilloscopes (Tektronix, Inc. model R564B).

The signal from the fast response total-pressure probe was enlarged
by a 1000-gain differential amplifier to enhance the output voltage, A
band-pass filter was used to attenuate 60 cycle noise from the surround-
ings and high frequency noise from the amplifier. A 0,01 pf capacitor
was placed in the circuit to eliminate the drifting DC voltage from the
filter.

The periodic sample-and-hold circuit and the photoelectric trigger-
ing circuit made it possible to synchronize data acquisition with the
periodic sampling position of a reference rotor blade. A 5 usecond
sample could be obtained during each revolution of the rotor since a
one slot per revolution disk rotating with the compressor shaft was used
to interrupt the photoelectric circuit. The photoelectric pickup was
attached by an adjustable arm to the circumferential motion carriage so
that the periodic rotor sampling position did not change in relation to
the stationary blades when the stationary blades were moved circumferen-
tially, The position of the adjustable arm could be changed to obtain
any desired rotor sampling position (YOR)' The rotor sampling position
was measured from the reference line of the probe measurement station
as shown in Figure 2.5,

The signal averaging circuit consisted of a low-pass filter with

a 1.0 second time constant that electronically averaged the periodic
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sample-and-hold signal. A specified number of these electronically
averaged signals were read by the digital voltmeter and arithmetically
averaged and stored by the calculator. The resulting data were called

periodic-average data.

2.5. Calibration Equipment

An air nozzle was used for the static calibration of the fast-
response total-pressure probe. The nozzle has a throat diameter of
25.4 mm (1.0 in.) and a contraction ratio of 144 to 1, Values of velo-
city from 0.0 to 50 m/s were provided by a regulated compressor air
supply. The temperature of the nozzle air was controlled with a variable-
current heater, blower, and heat exchanger system.

The Iowa State University Engineering Research Institute/Mechanical
Engineering Shock Tube Facility was used to generate a step input in !
total pressure for dynamic calibration of the fast-response total-pressure |
probe. The equipment used included the shock tube, the trigger and time

delay circuits, and the output recording equipment, A more detailed

description of the shock tube facility is given by Chaney (1977).
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3. EXPERIMENTAL PROCEDURE

The measurement of unsteady total pressures in the research compres-

sor involved two types of total-pressure measurements. Weyer (1976)
pointed out that because of the inherent zero thermal drift of semicon-
ductor pressure tranéducers, absolute pressure measurements made with
these transducers could involve large uncertainties. He recommended
that absolute unsteady total-pressure values should be determined by
adding time-average (DC) and fluctuating (AC) pressure measurement com-
ponents. Since compressibility effects in the present compressor were
negligibly small, the slow-response cobra probe pressure measurements of
Schmidt and Okiishi (1976) were considered to represent correct values
of time-average total pressure. The procedure used to determine the

fluctuating total-pressure data will be discussed in this section.

3.1. Periodic Sampling and Averaging Technique

The flow field in a turbomachine generally involves two types of
unsteady flows, namely, a periodically unsteady flow and a turbulent
flow. 1In order to measure the periodically unsteady total pressure,
the fast-response total-pressure probe signal was periodically sampled
(once per revolution) and averaged. As more electronically averaged
periodic signals are arithmetically averaged, the influence of the tur-
bulent component will be reduced because of its random nature. A rela-
tion between the standard deviation of the periodic sample average, O,
and the standard deviation of the random fluctuationms, O given by

Hirsch and Kool (1977) is
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where N is the number of arithmetically averaged samples involved. An
experiment was designed to yield a value of N that would give sufficient
accuracy. The results of the experiment appear in Figure 3.1. A sample
size of 250 was chosen since only small improvements on accuracy were
seen for larger sample sizes, Therefore, the calculator/DVM sampled the
electronically averaged periodic signal 250 times, once every 0.12
second, and then arithmetically averaged these 250 values to obtain one
periodic-average value, This process took approximately 30 seconds dur-
ing which time about 700 fast-response total-pressure samples were taken

to produce the electronically averaged signal.

3.2. Static Calibration

The relationship between the fast-response probe transducer output
voltage and a steady probe input pressure was determined by a static
calibration using the air nozzle described earlier. The plenum pressure
measured by a precision water-in-glass manometer was used as the total
pressure at the nozzle exit since no measurable difference could be
found between the two. The probe sensitivity data were then obtained
by placing the probe 0,25 nozzle orifice diameters downstream from the
nozzle exit with zero pitch and yaw angle. A voltage step was measured
for a‘sudden chaﬂée in input pressure by a circuit similar to the fast-
response measurement system already described. The band-pass filter was

replaced by a low-pass filter with a cut-off frequency of 20 Hz and the
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0,01 pf capacitor was removed to allow the DC voltage to be measured.
The signal averaging low-pass filter was also removed since it attenuated
the change in DC voltage. By using changes in pressure and voltage with
constant nozzle air temperature, the long-term zero drift problem was
completely avoided. Figure 3.2 shows a linear calibration for a nozzle i

air temperature of 21.7%.

3.3. Dynamic Calibration

| The measurement of high frequency, time varying, total-pressure
fluctuations requires the knowledge of the frequency response character-
istics of the measurement system involved. The fast-response probe
should be able to respond to the fluctuations it is required to measure.

Other electronic components in the system, such as amplifiers and/or

filters, should also be able to respond to the fluctuations.

The fast-response total-pressure probe used presently may be con-
sidered to respond approximately as a lightly damped second-order system,
Using the second-order éystem equations of Beckwith and Buck (1973), an
undamped second-order system can be shown to have an amplitude ratio
with an error greater than 57 (about 0,42 db) when the frequency is over
21.8% of the natural frequency. Therefore, an undamped or very lightly
damped fast-response total-pressure probe should not be used in measure-
ments where frequencies greater than 20% of the probe's natural frequency
are important. Some efforts have been made to extend this useful fre-

quency limit by increasing the natural frequency of a probe. For exam-

ple, Delio, Schwent, and Cesaro (1949), in an effort to increase the
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natural frequency of their probe, increased the radius of the tube up-
stream of the pressure-sensing transducer, This effort, however, re-
sulted in a lower damping ratio. .

Another important method of extending the useful frequency range of
the probe involves increasing the damping of the probe. Assuming an
allowable 5Z error in amplitude, calculations show that the useful fre-
quency range of a second-order system can be extended to 57,3% of the
natural frequency with an optimum damping ratio of 0.707, This agrees
with the assertion of Fleeger and Seyb (1975) that the useful frequency
range can be extended to 507 of the natural frequency if care is taken
to dampen the transducer properly. With this in mind, Delio, Schwent,
and Cesaro (1949) claimed that the insertion of an orifice, a wire mesh,
or some other fluid restriction would enable them to increase the damp-
ing ratio without decreasing the natural frequency. Methods of changing
the probe geometry in order to increase damping may decrease the natural
frequency and actually decrease the useful frequency range. One success=-
ful method of changing the probe geometry to extend the useful frequency
range was used by Atkins (1974). This method was to decrease the ratio
of cavity volume to tube volume. Siddon (1969) used loose cotton plugs
in front of his pregsure transducer to provide some viscous damping in
his static-pressure probe.

Siddon (1969) found that mechanical damping was insufficient to re-
duce resonance, The remaining resonance effect was eliminated using a
simple tuned L-C rejection filter. Low-pass filtering to remove dia-

phragm resonance has also been used successfully by Fischer (1971),

Robinson (1972), and Junkhan (1973). Cook and Rabinowicz (1963) suggest




a method of designing a properly matched, compensating ''motch filter" to
extend or improve the frequency response of a second-order system. They
caution that a poorly matched electronic second-order compensating net-
work could produce poorer response characteristics. Further problems
can occur if mechanical or electronic damping is used to extend the use-
ful frequency range of a second-order system. Nyland and Anderson (1971)
and Atkins (1974) point out that damping introduces a higher phase shift
which may not be acceptable. Fischer (1971) further points out that
waveform distortion might accompany this phase shift. He also claims
that it may be hard to maintain a constant damping ratio when damping is
added to probes being used in turbomachines,

Knowledge of the probe's natural frequency and damping ratio is
essential in order to obtain the useful frequency range of the probe.
However, this is not sufficient information for determining if a probe
can accurately respond to a particular wake form. Junkhan (1974) pointed
out that the minimum required natural frequency for a total-pressure
probe can be estimated as a function of the pressure difference, the
ratio of blade spacing to wake width, and the blade passing frequency.
He further said that the slope of the pressure-time input to the probe
has a strong effect on the transient error for a fast-response probe.
Siddon (1969) felt that transducers must have a frequency response com-
patible with the dominant spectral content of the unsteady components
of the instantaneous values of pressure and velocity.

Our research on probe response indicates that the ability of a ‘
fast-responge total-pressure probe to respond to a particular turbomachine

blade wake total-pressure distribution is a function of the natural
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frequency of the probe, the damping ratio of the probe, the blade passing
frequency, and the harmonic content of the wake, The harmonic content

is consistent with the parameters mentioned by Junkhan (1974). Gallus,
Lambertz, and Wallmann (1979) suggest that the harmonic content of a

wake is primarily a function of the wake width to blade spacing ratio and
the wake to freestream pressure difference as shown in Figure 3.3. Their
model shows that only the first few harwonics diminish slowly. The fre-
quency of the largest important harmonic of a wake should be within the
useful frequency range as determined by the natural frequency and the
damping ratio of the probe.

Figure 3.4 shows how a fast-response probe would respond to some
idealized wakes if it were modeled by a second-order system on an analog
computer. Calculations involved ratios of natural frequency to blade
passing frequency, wn/w , of 50, 25, 10, 5, and 2 for a ratio of blade
spacing to wake width, K, of 2.21, When the damping ratio, £, is 0.005
-- or in other words, when the system is nearly undamped -- the response
becomes entirely unacceptable for wn/wb < 10. For this case only.two
harmonics lie in the useful frequency range (about wn/wb‘i 5) which is
not enough for the probe to respond adequately. When the probe damping
ratio 1s increased to § = 0.100, the useful frequency range is not al-
tered significantly. However, the amount of amplification occurring at
regonance is not as great and the response is still tolerable in this
case for wn/wb = 10. If the probe damping ratio could be increased to
the optimum value of £ = 0,707, the useful frequency range would be ex-
tended to wn/wb > 2. The response is acceptable for wn/wb > 2 where all

the harmonics except the first are attenuated. Figure 3.5 shows the
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same sequence of responses for a blade spacing to wake width ratio of
7.29. This type of wake involves more harmonics than the one in Figure
3.4. The frequency response curve is required to be flatter since more

harmonics are important. This results in the responses for K = 7,29

being worse than those for K = 2,21. Responses that were tolerable for
E = 0.005 and wn/wb = 25 and for £ = 0.100 and wn/wb = 10 when K = 2,21
are no longer tolerable when K = 7.29,

After a probe has been found that will adequately respond to the
type of wakes to be measured, it is important to check the response of
the rest of the measurement system. When amplifiers are added to mv'.-
tiply the transducer output voltage and/or when filters are added to
remove noise or help dampen the probe response, the response curves of

these devices must be checked to insure that the useful frequency range

has not been altered to the point where the important harmonics of the
wakes are being severely amplified or attenuated. Figure 3.6 shows how

a low-pass filter responds to an idealized wake. The cut-off frequency
(the frequency where the relative amplitude is -3 db) is set aé each of
the first eight harmonics. As the cut-off frequency setting is increased,
the resulting amplitude, phase angle, and wave shape are improved because

fewer harmonics are being attenuated.

The frequency response characteristics of the probe used in this
research project were approximated from a dynamic calibration using a
shock tube to approximate a step input of total pressure, A shock mov-
ing at a Mach number of 1.08 provided a sudden total-pressure ratio of
1.208 to the tramsducer. Two thin film gages were used to measure the

speed of the shock. The second gage was also used to trigger an
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oscilloscope fitted with a camera. A time delay circuit was used to
insure that the reéording equipment was started a few useconds before
the shock reached the probe. A photographic record of the probe's
response to the shock was then obtained by holding the camera shutter
open and setting the oscilloscope to give a single sweep when triggered.
A schematic of the electronic data acquisition system is shown in Figure
3.7. 1In order to obtain the frequency response of the probe itself, the
oscilloscope recorded only the output from the probe alone without the
amplifier and thé filter normally used.

Typical voltage-time traces of the probe response to a step input
are shown in Figure 3.8. These traces pose a problem in calculating
the probe response characteristics through approximation as a second-
order system. Although in the limiting case of an undamped second-order
system the largest overshoot possible is twice the size of the step, the
overshoot observed was even larger. The frequency response data of a
fast-response total-pressure probe designed by Junkhan (1973) suggest a
means for explaining this apparent inconsistency. The position of the
transducer in Junkhan's probe tip, as shown in Figure 3.9, resulted in
the natural frequency of the probe system being much less than the nat-
ural frequency of the transducer. The response of this probe to a step
input shows the relationship of the probe system natural frequency to
the transducer natural frequency (see Figure 3.10), This voltage-time
trace reflects the addition of the low probe system natural frequency
(about 8 kHz) to the high transducer natural frequency (about 125 kHz).

The design of the probe used in this research project resulted in the

natural frequency of the present probe system being nearly the same as
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Figure 3.7. Shock tube electronic data acquisition system:
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measurement and probe output recording system.
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used in this research project.
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the natural frequency of the transducer, The addition of the two wave-
forms having similar frequencies can look like the traces in Figure 3.8,
The damping ratio of the probe was difficult to estimate because

the observed traces contained two similar waveforms. After an initial

' estimation using the logarithmetic decrement method and some speculation
on how the two waveforms might be summed, a reasonable solution was ob-
tained. It was found that a probe with a damping ratio of 0.009 and a
natural frequency of 94 kHz and a transducer with a damping ratio of

‘ 0.003 and a natural frequency of 94 kHz would combine to give a result

' quite similar to the one obtained experimentally. Figure 3.11 shows the

envelopes of the ringing for the probe and for the transducer. Since

the natural frequencies are the same, the ringing envelopes can be added,

The results of this addition and the similar ringing envelopes of the

experimental data are also shown in Figure 3,11,

Finally, the response curves of the differential amplifier and the
band-pass filter were obtained. These response curves are shown with
the response curve for the fast-response probe in Figure 3.12. The
amplifier response attenuates all of the harmonics of the wake except
the first. The total-pressure data taken In this project were measured
far enough from the trailing edge of the blades that the first harmonic
should have been dominant. Ravinc~anath and Lakshminarayana (1979)
show that the first harmonic is clearly more significant than the lar-

ger harmonics in their wake measurements,
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3.4. Data Acquisition

Period ic-average total-pressure data were acquired at six rotor
sampling positions (over one rotor blade-to-blade spacing) for each of
five spanwise locations (107, 30%, 50%Z, 70%Z, and 90% passage height from
hub) behind the first rotor and stator rows and one spanwise location
behind the second rotor row. For each one of these rotor sampling posi-
tions, data were obtained at twenty-one circumferential positions over
one spacing between two adjacent stator blades. All of the data were
obtained with the compressor operating at 1400 rpm with a flow coeffi-
cient of 0.42. This operation point can be seen on the research com-
pressor performance map in Figure 3.13.

Several preliminary steps were needed in order for measurements to
be made in the compressor. All of the instruments were allowed to warm
up for thirty minutes. The manometer used to measure the pressure dif-
ference across the venturi flow meter was zeroed. The probe yaw angle
and circumferential position potentiometers were calibrated and the
flow coefficient was set. Finally, the probe was immersed into the com-
presscer at the proper radial position. 1In order to zero the periodic
rotor sampling position, it was necessary to position the photoelectric :
pickup ac ~ero and then adjust the variable triggering delay. The de- »
sired rotor sampling position was then set.

Initial testing of the fast-response total-pressure probe showed
that despite the internal chamber the probe did show some sensitivity

to changes in flow direction. These tests showed that for changes of

ten degrees in the yaw angle, the probe readings varied about 5 N:m/kg.




; [t
j S 0.4—
s =
h ™
[T,
' Ll
. (=]
r 0.3
LJd
[7g]
=
]
&
2 0.2—
< o 1400 rpm
& - OPERATING POINT
]
2 01—
-
<L

0 | | | l

0 0.1 0.2 0.3 0.4 0.5
AVERAGE FLOW COEFFICIENT

Figure 3.13. Research compressor performance curve and
operating point.




40

Since time-average flow angles could vary by as much as twenty-five
degrees from the periodic-average flow angles, periodic-average flow
angles were needed for each circumferential position., The periodic-
average flow angles were obtained from the hot-wire measurements of
Schmidt et al. (1978).

The periodic-sampling and averaging technique was then used to

measure the fluctuating total pressure as explained previously.

3.5. Data Reduction

The alternating output voltage of the fast-response total-pressure
probe represented the fluctuating total pressure. This voltage, which
is actually the difference between the absolute values of altermating
voltage and time-average voltage, was related to the difference between
the fluctuating total pressure and the time-average total pressure by
the probe sensitivity determined in the static calibration. The abso-
lute total-pressure values were obtained by adding the fluctuating total-
pressure and the time-average total-pressure values, All of the total-
pressure values were expressed in terms of total-head units, N-m/kg.

The final values of absolute total head were thus found by the following

equation:

Hopp = ﬁtﬂzowmzo / Pair

g +H (3.2)

T
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Equations for basic fluid properties are given below:

2
Barometric pressure, N/m

P =
atn ~ Pnger [t-0 - 0.00018¢z, - 273.5)] Yogez73%x (3
3
Density of air, keg/m
0=P /Rt (3.4)
3
Specific weight of water, N/m
- 2
YHZO = g/g, [996.86224 + 0.1768124(5 t - 459.67)
- 2.64966 x 10‘3@- e - 459.67)2 (3.5)
;
+ 5.00063 x 10'6@ t - 459.67)3]

During the analysis of the da%a, which will be presented in the
next section, it proved useful to compare the measured data to data 1
obtained by calculation from hot-wire data (Schmidt et al, (1978)) taken
in the same compressor at the same operating conditions, The hot-wire

data were used to calculate a periodic-average total~head value by addi-

tion of the dynamic head, hd’ and the static head, h, assuming constant

r static pressure at any radial location. The dynamic head could be ob~

tained from the hot-wire data as follows:

1 .2
hd='2—V/g

c




Schmidt and Okiishi (1976) determined the static head values at each
axial station by using outer wall static pressure tap data and the
radial equilibrium equation. This assumes that the static head was
constant circumferentially at a particular radial position, which is
not necessarily correct. The method does provide some data for com-

parison purposes, however.
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4, TPRESENTATION AND DISCUSSION OF DATA

The periodically unsteady total-pressure data will be presented
and discussed in this section. The discussion of these data involves
the consideration of flow in wake, wake segment, and wake-free (free-
stream) flow regions, Therefore, a review of how flow field variables
are affected as chopped wake segments move through downstream blade

rows and interact with downstream blade wakes will be presented first.

4.1, Turbomachine Wake Transport and Interaction

When the wakes of an upstream blade row are periodically chopped
by a downstream blade row, the fluid in these chopped wake segments is
subsequently transported through the downstream blade row. The kine-
matics of wake transport and interaction has been established through
the work of Meyer (1958), Lefcort (19655, Smith (1966), Kerrebrock and
Mikolajczak (1970), Brandone and Bernmard (1971), Walker and Oliver (1972),
Lockhart and Walker (1974), Wagner and Okiishi (1977), and Gallus,
Lambertz, and Wallmann (1979). As a wake segment impinges onto the
pressure surface of a chopping blade, its motion relative to the chop-
ping blade results in a tendency for the wake segment fluid to move
toward the impacted pressure surface as the segment is transported
downstream., This tendency of the wake segment fluid to move toward the
pressure side of a chopping blade can also be geen in terms of a so~
called "slip velocity" (Kerrebrock and Mikolajczak (1970)) as demon~
strated in the simple velocity polygons in Figure 4.1. It should be

understood that these polygons are somewhat idealized. For example,
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(a) "Slip velocity" of IGV wake fluid at rotor entrance
(IGV exit).

. WAKE

L FREE-
STREAM

“SLIP
VELOCITY"

(b) '"Slip velocity" of rotor wake fluid at stator
entrance (rotor exit).

Figure 4.1. Relative velocity of wake segment fluid.




the velocity polygon in Figure 4.lb is simplified in that it suggests
that the relative flow angles for rotor wake and freestream flow parti-
cles are the same. These rotor exit relative flow angles can actually
vary when the rotor is not the first blade row in the machine as shown
by Wagner and Okiishi (1977). Their data indicate that as chopped IGV
wake segments left the rotor blades, they interacted with the rotor
wakes. Using the same terminology as Wagner and Okiishi (1977), an
"interacted wake situation" occurs when the rotor wake/IGV wake inter-
action takes place slightly upstream or at the measurement plane,
Similarly, a "noninteracted wake situation' occurs when the rotor wake/
IGV wake interaction takes place downstream of the measurement plane.
As the rotor blade moves tangentially, the chopped IGV wake segments
move tangentially and axially, thus resulting in periodic occurrences
of interacted and noninteracted rotor wake situations in the measure-
ment window, Figure 4.2 shows how these wake interactions affected the
rotor exit velocity polygons. The rotor wake velocity polygon is for

a particle of fluid at the center of the rotor wake, while the free-
stream velocity polygon is for a fluid particle in a region of flow not
affected by either rotor wakes or IGV wakes. In the case of a noninter-
acted rotor wake, the relative flow angle was smaller in the wake re-
gion than in the freestream, while the absolute velocity was larger in
the wake region. For an interacted rotor wake, the results were just
the opposite, In this case, the relative flow angle was larger in the
wake region than in the freestream, while the absol&te velocity was

smaller in the wake region., Ravindranath and Lakshminarayana (1979)

have taken data behind a rotor row with an IGV row farther (several
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INTERACTED
ROTOR WAKE

NONINTERACTED
Vu ROTOR WAKE

FREESTREAM

; Figure 4.2. Plane velocity vector triangles for fluid in an

interacted wake, a noninteracted wake, and freestream
for first rotor exit flow at midspan.
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chord lengths) upstream. In their situation, the effects of the IGV
wakes were small behind the rotor row and wake interactions were almost
nonexistent, Their data showed that the absolute velocities were larger
and that the relative flow angles were smaller in the wake region as
would be predicted from the noninteracting case mentioned above.

Fluid in chopped IGV wakes being transported through a rotor row
resides in the blade row longer than the fluid in the freestream region.
Thus, more energy is transferred to the wake region fluid than to the
freestream fluid. More energy is also added to the slower moving rotor
boundary layer fluid than to the freestream fluid. As this higher
enthalpy IGV wake fluid is transported through the rotor blade row, it
tends to pile up on the pressure surface of the rotor blades. The IGV
wake fluid then appears with the higher enthalpy rotor boundary layer
fluid in the rotor wakes giving the rotor wakes a definitely higher
value of stagnation temperature than the freestream fluid. In a simi-
lar manner, this higher enthalpy rotor wake fluid tends to pile up on
the pressure surface of stator blades as the rotor wakes are chopped
and transported through a stator blade row. The rotor wake fluid then
appears in the stator wakes giving them a higher value of stagnation
temperature than the freestream fluid. The idea of high enthalpy wakes
from an upstream rotor blade row appearing in the wakes of a downstream
stator blade row was developed by Kerrebrock and Mikolajczak (1970).
They used this wake transport model to explain the shape of measured
transonic compressor stator exit stagnation-temperature profiles.

Kerrebrock and Mikolajczak (1970) also attempted to calculate the

shape of stagnation-pressure profiles in a compressor. They found that
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these profiles could not be easily determined. However, they did state
that rotor wakes may have either an excess or a deficiency of stagnation
pressure in comparison to freestream values. The difffculty in predict-

ing total-pressure levels in a compressor 1is related to the fact that

while total temperatures are dependent on work and heat transfer amounts
but are not dependent on loss, total pressures depend on work, heat
transfer, and loss. The total-pressure data in the remaining sections

show how wakes and their interactions affect local total-pressure values.

4.2, Data Uncertainty

The uncertainty levels associated with this total pressure data are
discussed first. Periodic-average total-pressure data were obtained for
six rotor sampling positions at each of several selected radial posi-

tions between blade rows in the first stage of the research compressor

and at one radius only behind the second rotor. For any one radial and
axial location combination, the aritlmetic average of the six measured
periodic-average total-pressure profiles should compare favorably with ?
the time-average total-pressure profile as measured with a slow-response
probe system (Schmidt and Okiishi (1976)). Figure 4.3 shows such com-
parisons at midspan (PHH = 507) for the first rotor and first stator
flows. Another method was employed to compare fast-response and slow-
response total-pressure probe data. At each radial and axial location
combination, periodic-average total-pressure profiles for each rotor
sampl ing position were numerically integrated to yield blade-to-blade-

average values of total pressure. The blade-to-blade-average values of
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periodic-average total pressures corresponding to each of the six rotor
sampling positions were then arithmetically averaged and compared with
the blade-to-blade-average values of time-average total pressures obtained
by numerically integrating the measured time-average total-pressure
profile. Once again, these comparisons showed excellent agreement. All
of the blade-to-blade-average value and time-average value comparisons are
shown in Table 4.1 and Figure 4.4. These comparisons suggest an uncer-
tainty of 3 Nem/kg in the periodic-average total-head data.

As explained previously, hot-wire velocity data taken in the re-
search compressor configuration now employed were used to calculate
total-head values assuming constant static pressure circumferentially
at any radial location. These calculated data were compared to the
total-head data taken with the fast—fesponse total-pressure probe. In
making this comparison, it is important to realize that the static
pressure is not necessarily constant at any radial position,

Ravindranath and Lakshminarayana (1979) have taken data which show that
the static pressure can vary circumferentially in a turbomachine. The
amount of static-pressure variation depends on the distance downstream

of the blade row. This variation should be small at the measurement
stations used in this research compressor., The comparison of hot-wire
based and measured total-head values, shown in Figure 4.5 for first J

rotor and first stator exit flows at midspan (PHH = 50%), indicates

similar trends for the two types of curves.
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Figure 4.4. Radial distribution of blade-to-blade-average total head.




54

200
O—O BLADE-TO-BLADE-AVERAGE VALUES CALCULATED
FROM PERIODIC-AVERAGE DATA
~——— BLADE-TO-BLADE-AVERAGE VALUES CALCULATED :
195 }— FROM TIME-AVERAGE DATA i
190 p—
o
4
S
€
=z
o 1854
-4
Ld
p g
—
<
—
[an)
—
180+
1750
170 | ] 1 ] :
0 20 40 60 80 100

PERCENT PASSAGE HEIGHT FROM HUB, PHH |
(b) Station 4.

Figure 4.4. Continued.




)

55

-3se] 3yl Aq paanseaw sanJea peay-yejzol afeaaae-oyporaad jo uosyaedwo)

‘¢ uorieig (e)

*HHd %0G 3® eaep KIFd5073aA
I M-3OYy mO1j pale[nNO[eD San[eAa 3soyly 03 aqoid sinssaid-Te303 Isuodsaz

"Gy 2an314

T . ﬂm\b . - o0 [« M} 0RO ﬂm\v\’n‘ 2 UD.\D on s ) J A"W\\M“ 2o o
o oo »— SUr o9 —D oh -D o2 _D oo rﬂ.M J ] s h 0 (—ﬂ o f.M A ! Ohm ‘auL.O lc’.h;’h-nm‘\‘\ocwﬂm
8 i 8 8
e8°0 = Ys/¥04 69°0 = Js/%04 0570 = ds/%04 |
o3 2 TR o1l
Seege g k!/]/bﬁ/ﬂ// g 4/ dx\ S S | 8
- r.nl ;V/Jf .ul v&!
Wil <y %
V.Ml vV-( ‘.V-l
2 SINIWTUNSYIW AIM-10H © |2 :
SINIWIANSYIW 3904d
UNSSTUA-TVL0L ISNOJSIH-1SY4 O ;
— S_l 08'0 09°0 NW\PQ:4D 02’0 p0°0 0ol 080 [N} ﬂm\Wuv.u 0z'n b0 0 1 H oD _‘ oe © .n”bvb\xqm‘\\lrc‘-ﬂﬂr\w wO‘N..u‘\\‘ H\E D‘|
pero = Js/¥n (o = Ys/%n | 000 = Is/%n |
& 5% 5
e&.,v/f Qw /B o e e l\u
. 1wm x\\W\Q&/\vwn g b ON/Q\O. Ay ..Mn
. s >
2 2 »
2 8 3

-

NP Sy P

- 1

S




56

‘ponuriuo) °G*H aindt4d

*y uworleas (q)

oo 1 [N 08’0 m\w: o 02’0 on'o ooy 09D 080 Jﬂm‘\ws.u 02°'0 DG’ 0 0o 1 080 g0 nm\W-..o 02’0 00°0
I U X 1 1 ~ Il 1 1 1 L a i 1 ) I 1 H.
8 oy _ YUY 8 en _ Yo Y 8
£8°0 mm\m0> 69°0 = “S/°0A 05°0 = “S/°0A
£ ME ME
8 3 8
5z 53 5
mN mN WN
L] [] 1
= ﬁ X ﬁ N
‘/ ‘/ -~
[55 53 a3
8 8 8
=3 fu: \\‘ rs
\&\ 5 ﬂw. 3
= N w.a
8 g 8
— B 1 T
0ot 090 [N HM\W;.u 0z2'n . 0o 8-_ Oe_a n-m m\w;_u um__u cc.ol [+ ] 0e’'D W\E m\Ws.a 02°0 Un_u“];
- i i ) I L AJA. 3 —_— 1. t - L 4 %
8 U /4 8 . Y. s E
pe0 = 3s/%04 170 = 9s/%a 00°0 = s/%n4
[ = [
8 8 3
5% & =
B 8 B2
z I 3
vww ywﬂ ,Mnum
-3 ] Q\Q; 1
o af < X ot
% & & Lot
M d ] 'l 9

i




4.3, TFirst Rotor Exit Flow Data

4.3.1. 1 Total-

First rotor exit time-average and periodic-average local total-head
data are compared in Figure 4.6. The IGV wake avenues are characterized
by lower time-average total-head values. The vertical line passing
through each of the plots represents the approximate circumferential
location of the rotor wakes as indicated by hot-wire data. An "I" label
indicates an interacted wake while an "N" is used for noninteracted
wake, Note that the periodic-average rotor wake local total-head values
vary considerably with rotor sampling position. It was concluded that
this unsteady behavior was related to the periodically varying spatial
distribution and proportions of the different kinds of fluid particles
(freestream, IGV wake, segment, noninteracted rotor wake, interacted rotor
wake) present in the measurement window for the different rotor posi-
tions (see Figure 4.7). This reasoning was used earlier (Wagner and
Okiishi (1977)) to explain observed periodic variations in local velo-
cities. The velocity polygons shown in Figure 4.8 in combination with
the periodically varying cascade plots of Wagner and Okiishi (1977)
shown in Figure 4.7 and the observed location of the rotor wakes rela-
tive to the IGV wake avenues suggest, as might be expected, that inter-
acted wakes generally involve lower total-head values than noninteracted
wakes. This conclusion was made for data at midspan, but it also proved
to be valid elsewhere in the passage. At all span locations, the inter-

acted rotor wake total-head values are less than the chopped IGV wake

segment total-head values and much less than the freestream total-head

P
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Figure 4.7. Periodic-average cascade plots for the first stage
of the research compressor at 50 percent passage
height (from Wagner and Okiishi (1977)).
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YOR/SR = 0.69 YOR/SR = 0.83

Figure 4.8. Velocity triangles at station 3 and 50% PHH.




values. Further, the data indicate that except at 10% and 30% span from

the hub, the noninteracting wake total-head values are larger than the
total-head values measured at that circumferential location in the ab-
sence of any wake material (i.e., when freestream flow particles occupy
that portion of the measurement window). For example, at 50% span
(Figure 4,6¢c), the total-head at circumferential position Y/SS = 0.411
is 231.78 N*m/kg for a noninteracting wake fluid particle (YOp/Sg = 0.17)
and 206.58 N'm/kg for a freestream fluid particle (YOg/Sp = 0.69). At
10% span the opposite trend is true: the noninteracting total-head
values are smaller than the total-head values measured at that circum-
ferential location in the absence of any wake material. For example,
at 10Z span (Figure 4.6a), the total-head at circumferential position
Y/SS = 0.617 is 201.56 N-m/kg for a noninteracting wake fluid particle
(YOR/SR = 0.69) and 232.06 N'm/kg for a freestream fluid particle
(YOR/SR = 0,00)., At 30% span, both kinds of beh;vior are noted. These
observations appear to be related to blade profile loss levels. As in-
dicated by the data in Figure 4.9 the blade-element loss level near the
hub is very high compared to the level elsewhere in the passage, The
periodic-average velocity data in Figure 4,10 show that the large loss
near the hub is associated with a very deep wake and is thus indicative
of a large profile loss. Elsewhere in the passage, the wakes are
shallower. The larger loss observed near the tip is partly due to a
tip clearance leakage effect.

All of these observations about the details of the local total-he~d
variations prompted the organization of the information in Table 4.2,

In summary form, the processes proposed in Table 4,2 suggest what local

total-head levels will be observed at the measurement window when certain
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Table 4.2. Behavior of fluid particles moving from the rotor inlet to
the measurement station downstream of the rotor

Type of Total pressure Total pressure
fluid at the Energy at the rotor exit
particle rotor inlet added Losses measurement station
Freestream A B c D
Chopped
IGV wake <A >B >C <D
Noninteracted
rotor wake A >>B >C(50%-907% PHH) >D
>>C(30%) D
>>>C(10%) <D
Interacted
rotor wake <A >>B >>>C <<D

The freestream values are set arbitrarily at levels A, B, C, and D.
Other values are estimated in terms of being less than, equal to, or
greater than these reference values.

kinds of fluid flow particles are there. It is clear that the changing
spatial distribution and proportions of the different kinds of particles
present at the measurement station with rotor sampling position will

lead to differing total-head profiles,

4.3.2. Blade-to-Blade-Average Data

The blade-to-blade periodic-average and time-average total-head
profiles of Figure 4.6 were integrated and the blade-to-blade-average

results are compared in Figure 4.11. The periodic unsteadiness of the
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blade-~to-blade-average total head is large everywhere but appears to be
greatest in the center portion of the blade span and less at either end.
At 107 span from the hub, the interacting wake blade-to-blade-average
total head is greater than the noninteracting wake value. Also, the
interacting wake total-head value is greater than the time-average value
while the noninteracting wake value is less than the time-average value,
The opposite is true from 50% span on ocut to near the tip. The local
effects mentioned and explained previously were influential enough to

affect blade-to-blade-average results appreciably.

4,4, TFirst Stator Exit Flow Data

Local total-head data taken behind the first stator row for differ-
ent rotor sampling positions are presented in Figure 4.12,

Since energy was not added to the fluid flowing through the stator
blade passage, and because the flow was approximately adiabatic, the
total-head values in the stator wakes are indicative of the losses only,
and the stator data are easier to interpret than the rotor data. Stator
wake and chopped rotor and inlet guide vane wake fluid particles domi-
nate the field at the measurement window downstream of the stator and
result in mainly low levels of total pressure in the stator exit flow.
The variation of the blade-to-blade-average total-head values with rotor
sampling position is shown in Figure 4.13. While the first rotor exit
total-head values varied considerably with rotor sampling position be-

cause of the energy transfer and wake interaction effects, the first

stator exit total-head values varied little with rotor sampling position.
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station 4.
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The absence of energy addition in the stator row appears to be the main
reason for the smaller variation of stator exit total pressure of the

different kinds of fluid particles involved.

4.5, Second Rotor Exit Flow Data

Nl

Data were taken at the exit of the second rotor at one radial posi-
tion (PHH = 50%) to gain an impression of how much rotor exit total-
pressure levels would vary with rotor sampling position in a downstream
stage. The time-average, periodic-average total-pressure comparison
for the second rotor exit flow data appears in Figure 4.14, As observed
with the first rotor exit data, total-head values in the rotor wake re-

gions are larger and smaller than freestream values depending on rotor

sampling position. The velocity diagrams in Figure 4.15 show that the
larger rotor wake total heads occur for noninteracted rotor wakes and

the smaller total heads occur for interacted rotor wakes. The variation
in blade-to-blade-average rotor exit total-head values with rotor sampling
position is not as great for the second rotor (see Figure 4.16) as it 1is
for the first rotor. The second rotor exit flow data also show less
differenc: in the shape of the total-head profiles from one rotor sampling

position to another, and the corresponding velocity polygons of Figure G

4,15 show less difference between interacted rotor wakes and noninter-
acted rotor wakes. Wake segments from more than one blade row are being
transported through the second rotor row and thus through the measure-

ment window at station 5. This would tend to smooth the variations with

rotor sampling position of fluid properties such as total pressure and f

lead to smaller changes in that property.
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Figure 4.15.

Velocity triangles at station 5 and 50% PHH.
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5. CONCLUSIONS

Turbomachine flow total-pressure data are valuable because they are
indicative of the amounts of energy gained and lost by the fluid parti-
cles involved. Rotor wake/stator or IGV wake interactions behind a rotor
blade row have a strong effect on local total-pressure values. Rotor
wakes that have interacted with stator of IGV wakes involve lower total
pressures than rotor wakes that have not interacted with stator of IGV
wakes. "This effect is stronger in the first stage than in later stages.

The extent of total-pressure variation with rotor sampling position
behind the first stator row was appreciably less than the amount behind
the first and second rotor rows. Periodic unsteadiness of total pres-
sure is ~.nsiderable downstream of a blade row that involves energy
addition and loss and is minimal downstream of a blade row that involves
energy loss only.

Determination of the frequency response characteristics of the en-
tire measurement system 1s necessary before measuring high-frequency,
time-varying, total-pressure fluctuations. From these frequency response
characteristics, the useful frequency range (within which the error in
the relative amplitude 1is less than 5%) of the measurement system can be
determined. The phase response should also be considered. The harmonic
content of the flow to be measured should be determined to insure that
all the important harmonics are within the useful frequency range of the
measurement system. Hot-wire data and a Fast Fourier Transform could

aid in determining --1ke harmonic content.




6.

The results of
would be helpful in
turbomachine energy
Complete surveys of
and third stages of

for other operating

sidered.
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RECOMMENDATIONS FOR FUTURE RESEARCH

this research project indicate that further research
confirming the observations already made about how
transfer is affected by blade wake interactions.
periodically unsteady total pressures in the second
an axial-flow compressor should be obtained. Data

points would be useful. The axial development of

the periodically unsteady total-pressure field should be measured.
Static-pressure values should be obtained from the total-pressure probe
and hot-wire probe data and analyzed. Finally, further improvements in
the measurement system should be made. For example accommodation of

more harmonics within the system's useful frequency range might be con-
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8. APPENDIX: TABULATION OF PERIODIC-AVERAGE TOTAL-HEAD DATA

The periodic-average total-head circumferential survey data are

tabulated in this section. The data are at various radial and rotor

sampling positions for flow downstream of the first rotor row (station
3), the first stator row (station 4), and the second rotor row (station
5).

The symbols and notation are defined as follo;s:
4 Y/SS = circumferential spacing, Y/Sg
HT = periodic-average total head, N-m/kg
PHH = percent passage height from hub

YOR/SR = circumferential ratio blade sampling position,
YOR/SR
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